OCR Engine Reference
vlm4ocr.ocr_engines.OCREngine
OCREngine(
vlm_engine: VLMEngine,
output_mode: str = "markdown",
system_prompt: str = None,
user_prompt: str = None,
)
This class inputs a image or PDF file path and processes them using a VLM inference engine. Outputs plain text or markdown.
Parameters:
inference_engine : InferenceEngine The inference engine to use for OCR. output_mode : str, Optional The output format. Must be 'markdown', 'HTML', or 'text'. system_prompt : str, Optional Custom system prompt. We recommend use a default system prompt by leaving this blank. user_prompt : str, Optional Custom user prompt. It is good to include some information regarding the document. If not specified, a default will be used.
Source code in packages/vlm4ocr/vlm4ocr/ocr_engines.py
stream_ocr
stream_ocr(
file_path: str,
rotate_correction: bool = False,
max_dimension_pixels: int = None,
) -> Generator[Dict[str, str], None, None]
This method inputs a file path (image or PDF) and stream OCR results in real-time. This is useful for frontend applications. Yields dictionaries with 'type' ('ocr_chunk' or 'page_delimiter') and 'data'.
Parameters:
file_path : str The path to the image or PDF file. Must be one of '.pdf', '.tiff', '.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp' rotate_correction : bool, Optional If True, applies rotate correction to the images using pytesseract. max_dimension_pixels : int, Optional The maximum dimension of the image in pixels. Original dimensions will be resized to fit in. If None, no resizing is applied.
Returns:
Generator[Dict[str, str], None, None] A generator that yields the output: {"type": "info", "data": msg} {"type": "ocr_chunk", "data": chunk} {"type": "page_delimiter", "data": page_delimiter}
Source code in packages/vlm4ocr/vlm4ocr/ocr_engines.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
sequential_ocr
sequential_ocr(
file_paths: Union[str, Iterable[str]],
rotate_correction: bool = False,
max_dimension_pixels: int = None,
verbose: bool = False,
) -> List[OCRResult]
This method inputs a file path or a list of file paths (image, PDF, TIFF) and performs OCR using the VLM inference engine.
Parameters:
file_paths : Union[str, Iterable[str]] A file path or a list of file paths to process. Must be one of '.pdf', '.tif', '.tiff', '.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp' rotate_correction : bool, Optional If True, applies rotate correction to the images using pytesseract. max_dimension_pixels : int, Optional The maximum dimension of the image in pixels. Original dimensions will be resized to fit in. If None, no resizing is applied. verbose : bool, Optional If True, the function will print the output in terminal.
Returns:
List[OCRResult] A list of OCR result objects.
Source code in packages/vlm4ocr/vlm4ocr/ocr_engines.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
concurrent_ocr
concurrent_ocr(
file_paths: Union[str, Iterable[str]],
rotate_correction: bool = False,
max_dimension_pixels: int = None,
concurrent_batch_size: int = 32,
max_file_load: int = None,
) -> AsyncGenerator[OCRResult, None]
First complete first out. Input and output order not guaranteed. This method inputs a file path or a list of file paths (image, PDF, TIFF) and performs OCR using the VLM inference engine. Results are processed concurrently using asyncio.
Parameters:
file_paths : Union[str, Iterable[str]] A file path or a list of file paths to process. Must be one of '.pdf', '.tif', '.tiff', '.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp' rotate_correction : bool, Optional If True, applies rotate correction to the images using pytesseract. max_dimension_pixels : int, Optional The maximum dimension of the image in pixels. Origianl dimensions will be resized to fit in. If None, no resizing is applied. concurrent_batch_size : int, Optional The number of concurrent VLM calls to make. max_file_load : int, Optional The maximum number of files to load concurrently. If None, defaults to 2 times of concurrent_batch_size.
Returns:
AsyncGenerator[OCRResult, None] A generator that yields OCR result objects as they complete.